Residential Sector Solutions

Meeting the Requirements of Domestic Technical Handbook Section 5: Noise (Scotland)
Noise nuisance outside the control of dwelling occupants has increased substantially over the last decade, mainly as a result of changing lifestyles, greater numbers and use of sound-producing equipment and household appliances.

Section 5 aims to limit the transmission of sound to a level that will not threaten the health of occupants from sound transmission emanating from attached buildings or a differently occupied part of the same building. Since October 2010, it also covers sound from within the same dwelling if occupants are in rooms where they would expect to have some degree of peace and quiet.

Summary of 2010 changes to the Domestic Technical Handbook Section 5: Noise

- A new scope covering all dwellings and residential buildings.
- An increase in the sound insulation performance of separating walls and separating floors.
- Introduction of Post-Completion Testing for all separating walls and separating floors.
- Guidance for carrying out work to existing buildings, e.g. conversions.
- A new standard to reduce noise between rooms within the same dwelling (particularly around sleeping areas).

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of 2010 changes to the Domestic Technical Handbook Section 5: Noise</td>
<td>3</td>
</tr>
<tr>
<td>Design performance requirements</td>
<td>4 – 5</td>
</tr>
<tr>
<td>Standards S.1</td>
<td>4</td>
</tr>
<tr>
<td>Demonstrating compliance</td>
<td>4</td>
</tr>
<tr>
<td>Designing for on-site performance</td>
<td>6</td>
</tr>
<tr>
<td>Standards S.2</td>
<td>7</td>
</tr>
<tr>
<td>Construction details</td>
<td>8 – 21</td>
</tr>
<tr>
<td>Separating walls</td>
<td>8</td>
</tr>
<tr>
<td>Separating floors</td>
<td>12</td>
</tr>
<tr>
<td>Internal walls</td>
<td>16</td>
</tr>
<tr>
<td>Internal floors</td>
<td>20</td>
</tr>
<tr>
<td>Flanking details</td>
<td>22 – 27</td>
</tr>
<tr>
<td>Twin frame timber stud walls</td>
<td>23</td>
</tr>
<tr>
<td>Timber joist floors</td>
<td>26</td>
</tr>
<tr>
<td>Internal walls</td>
<td>27</td>
</tr>
</tbody>
</table>
Standard 5.1

Section 5 states:

Every building, which is divided into more than one area of different occupation, must be designed and constructed in such a way to limit the transmission of source noise from normal domestic type activities, between such areas, to a level that will not threaten the health of, or cause inconvenience to, the building occupants.

Table 1 – Design Performance Levels

<table>
<thead>
<tr>
<th>Minimum airborne sound insulation</th>
<th>Conversion of traditional buildings*</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{n,w} 56 dB</td>
<td>D_{n,w} 53 dB</td>
</tr>
<tr>
<td>Maximum impact sound transmission</td>
<td>L_{w} 56 dB</td>
</tr>
<tr>
<td></td>
<td>L_{w} 58 dB</td>
</tr>
</tbody>
</table>

*Definition of traditional buildings:
A building or part of a building of a type constructed before or around 1919:
(a) using construction techniques that were commonly in use before 1919; and
(b) with permeable components, in a way that promotes the dissipation of moisture from the building fabric.

Demonstrating compliance

There are two methods in which to achieve the design performance levels of Standard 5.1.

They are by the use of:

a) Example Constructions; or
b) Other constructions

a. Example Constructions

Example Constructions have been developed to repeatedly achieve the required design performance levels, providing that they are built correctly and all associated flanking details are correctly designed. They are examples of constructions, commonly used within the UK, that are proven to reduce sound transmission at frequencies which can generate neighbour complaints.

b. Other constructions

Other constructions include manufacturers’ proprietary solutions and new, or innovative, construction designs, which are not considered to be Example Constructions.

Post-Completion Testing

The specification of Example or other constructions alone will not guarantee that the regulatory performance levels will be achieved. Therefore, the onus is now on the housebuilder to demonstrate compliance to Domestic Technical Handbook Section 5: Noise, by carrying out Post-Completion Testing of the built construction on site.

On completion, new homes should be tested in accordance with the table below.

Table 2 – Recommended minimum number of tests (for each different construction type)

<table>
<thead>
<tr>
<th>No. of attached dwellings</th>
<th>No. of tests for separating walls (houses)</th>
<th>No. of tests for separating walls (flats or maisonettes)</th>
<th>No. of tests for separating floors (flats or maisonettes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-build using Example Constructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 – 20</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>21 – 40</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Over 40</td>
<td>1 extra for every 20 houses (or part thereof)</td>
<td>1 extra for every 20 flats or maisonettes (or part thereof)</td>
<td>1 extra for every 20 flats or maisonettes (or part thereof)</td>
</tr>
<tr>
<td>New-build using Other constructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 – 10</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11 – 20</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>21 – 30</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Over 30</td>
<td>1 extra for every 10 houses (or part thereof)</td>
<td>1 extra for every 10 flats or maisonettes (or part thereof)</td>
<td>1 extra for every 10 flats or maisonettes (or part thereof)</td>
</tr>
</tbody>
</table>

Sound tests should only be carried out on a building that is complete and when doors, access hatches and windows are fitted. Carpet should not be used as a bonded resilient floor covering or laid before an impact test for separating floors.

Sound testing should be carried out in accordance with:

a) BS EN ISO 140-4: 1998 and BS EN ISO 717-1: 1997, for airborne sound transmission; and
Designing for on-site performance

For separating wall and floor constructions to be fully effective, care must be taken to correctly detail the junctions between the separating wall or floor, and associated elements such as external walls, other separating elements, penetrations and door openings. Inappropriate detailing of flanking conditions can greatly reduce the level of performance of the separating element on site, from that achieved in the laboratory, and regulatory requirements may not be achieved in practice.

Post-Completion Testing exposes poor flanking details and inadequate separating wall and floor specifications. Therefore, good flanking detailing and specifications that provide a reasonable margin of safety on site, are essential.

A method of predicting the achievable on-site (DnTw) performance, is to refer to a laboratory (Rw) performance rating.

In order to achieve a particular performance on site, a recommended safety factor of +7 dB will satisfy most requirements when specifying a separating wall or floor using laboratory performance data.

In our experience the following safety factors are realistic in their potential to satisfy the requirements of Domestic Technical Handbook Section 5: Noise, assuming good workmanship, with all flanking paths appropriately detailed, and potential air leakage paths sealed.

<table>
<thead>
<tr>
<th>Airborne site requirement</th>
<th>Recommended laboratory performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DnTw 56 dB</td>
<td>Rw 63 dB</td>
</tr>
<tr>
<td>DnTw 53 dB</td>
<td>Rw 60 dB</td>
</tr>
</tbody>
</table>

It is possible that the safety factor applied could be lower than the above examples if acousticians are involved on the project as they may have a greater knowledge of the site and a degree of control over detailing and installation.

Where there is a requirement for impact performance on site (Lnc), this relates to separating floors only. Provided the floor meets the relevant airborne requirement and there is a de-coupling of both the walking surface and the ceiling from the base floor, then in our experience the floor will have the potential to meet the impact requirement.

Section 5 states:

Every building must be designed and constructed in such a way to limit the transmission of source noise from normal domestic type activities, through a wall or floor and between a room and internal space where noise is likely to occur, to a level that will not cause inconvenience to the building occupants.

Standard 5.2 applies to a wall or floor forming a room in a dwelling, or a room in a residential building, which is capable of being used for sleeping.

It does not apply to a wall between an en-suite bathroom and the room it serves or walls within a hospital or place of lawful detention.

Minimum airborne sound insulation Rw 43 dB.
Separating walls

Separating wall details within this section are of timber, masonry and steel construction and include both Example Constructions and other constructions.

Example Constructions are shown incorporating British Gypsum and Saint-Gobain Isover products, where appropriate. These details are British Gypsum versions of Example Constructions, which, provided they are built correctly, are deemed to achieve the requirements of Standard 5.1.

Other constructions are shown as British Gypsum Approved Systems, which, provided they are built correctly, have the potential to achieve, or exceed, Standard 5.1 performance levels required for separating wall constructions in new-build houses and flats.

Post-Completion Testing must be carried out in accordance with Table 2, on page 5 of this document, to demonstrate compliance.

Timber frame

Example Construction (Wall Type 3)

- Overall construction width minimum 300mm
- 240mm (minimum) between inner faces of wall lining twin studs must not be bridged by diagonal bracing
- Board options
 - Inner layer 19mm Gyproc Plank and outer layer 12.5mm Gyproc WallBoard (or 19mm Gyproc Plank and 12.5mm Rigidur &)
 - Double layer of 15mm Gyproc SoundBloc (or 15mm Gyproc SoundBloc and 12.5mm Rigidur &)
 - Double layer of 15mm Gyproc FireLine (or 15mm Gyproc FireLine and 12.5mm Rigidur &)
- 65mm Isover Acoustic Partition Roll (APR 1200) or 90mm Isover Timber Frame Batt 40 positioned between the studs in each frame

Timber frame - with sheathing board

Example Construction (Wall Type 3)

- Overall construction width minimum 305mm
- 250mm (minimum) between inner faces of wall lining 50mm (minimum) gap between sheathing
- Board options
 - Inner layer 19mm Gyproc Plank and outer layer 12.5mm Gyproc WallBoard (or 19mm Gyproc Plank and 12.5mm Rigidur &)
 - Double layer of 15mm Gyproc SoundBloc (or 15mm Gyproc SoundBloc and 12.5mm Rigidur &)
 - Double layer of 15mm Gyproc FireLine (or 15mm Gyproc FireLine and 12.5mm Rigidur &)
- 65mm Isover Acoustic Partition Roll (APR 1200) or 90mm Isover Timber Frame Batt 40 positioned between the studs in each frame
Cavity masonry wall – plastered
British Gypsum Approved System

- Overall construction width 306mm
- Twin leaf 100mm lightweight aggregate blocks (1600kg/m³) with minimum 80mm cavity
- Minimum 13mm Thistle plaster to both sides

Advice should be sought from the block manufacturer for the fire resistance performance.

Cavity masonry wall – drylined
British Gypsum Approved System

- Overall construction width 341mm
- Twin leaf 100mm lightweight aggregate blocks (1600kg/m³) with minimum 100mm cavity
- 8mm Gyproc Soundcoat Plus and 12.5mm Gyproc WallBoard on dabs to both sides

Advice should be sought from the block manufacturer for the fire resistance performance.

Steel Frame - GypWall quiet
British Gypsum Approved System

- Overall construction width 300mm (minimum)
- Two frames of Gyfframe 48S 50 T Studs at 600mm centres
- 50mm lever Acoustic Partition Roll (APR 1200)
- Double layer of 15mm Gyproc SoundBloc each side

PSR ADEW005

at 600mm centres
Separating floors

Example Constructions are shown incorporating British Gypsum and Saint-Gobain Isover products, where appropriate. These details are British Gypsum versions of Example Constructions, which, provided they are built correctly, are deemed to achieve the requirements of Standard 5.1.

Other constructions are shown as British Gypsum Approved Systems, which, provided they are built correctly, have the potential to achieve, or exceed, Standard 5.1 performance levels required for separating floor construction in new-build houses and flats.

Post-Completion testing must be carried out in accordance with Table 2, on page 5 of this document, to demonstrate compliance.

Timber I joists

Example Construction (Floor Type 3B)

- 18mm (minimum) t&g chipboard walking surface (minimum density 600kg/m²)
- 19mm Gyproc Plank
- Floating Floor Treatment that achieves: delta R_w >17 dB, delta R_w+Ctr >13 dB, and delta L_w >16 dB
- 25mm Isover Acoustic Partition Roll (APR 1200)
- 15mm timber deck
- Minimum 240mm timber I joists at maximum 480mm centres
- 100mm Isover Acoustic Partition Roll (APR 1200)
- Gyptframe RB1 Resilient Bar at 400mm centres
- Double layer of 15mm Gyproc SoundBloc

Timber solid joists

Example Construction (Floor Type 3)

- 18mm (minimum) t&g chipboard walking surface (minimum density 600kg/m²)
- 19mm Gyproc Plank
- Floating Floor Treatment that achieves: delta R_w >17 dB, delta R_w+Ctr >13 dB, and delta L_w >16 dB
- 65mm Isover Acoustic Partition Roll (APR 1200)
- 15mm timber deck
- Minimum 220mm timber solid joists at maximum 400mm centres
- 100mm Isover Acoustic Partition Roll (APR 1200)
- Gyptframe RB1 Resilient Bar
- Double layer of 15mm Gyproc SoundBloc

Advice should be sought from the I joist manufacturer for the fire resistance performance.
Pre-cast concrete floor slabs
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 70mm Gypsum Steel Battens
- 15mm timber deck
- Minimum 215mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100040

Pre-cast concrete floor slabs
Example Construction (Floor type 2A)

- Minimum 3mm bonded resilient floor covering
- 65mm sand cement screed
- Isolating layer (number 1) minimum 50mm mineral wool batt (140kg/m²) or 25mm expanded or extruded polystyrene insulation board
- 200mm pre-cast concrete floor slabs (minimum weight 163kg/m²)
- 150mm ceiling void
- Casoline ceiling
- 12.5mm Gyproc SoundBloc or Gyproc WallBoard

Advice should be sought from the concrete manufacturer for the fire resistance performance.

PSR C100031

Pre-cast concrete floor slabs
Example Construction (Floor type 2B)

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 70mm Gypsum Steel Battens
- 15mm timber deck
- Minimum 195mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the concrete manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 70mm Gypsum Steel Battens
- 15mm timber deck
- Minimum 215mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100040

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 70mm Gypsum Steel Battens
- 15mm timber deck
- Minimum 215mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 50mm Gypsum Strong Slab Roll (APR 1200)
- 15mm timber deck
- Minimum 240mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 50mm Gypsum Strong Slab Roll (APR 1200)
- 15mm timber deck
- Minimum 240mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 19mm Gyproc Plank
- 50mm Gypsum Strong Slab Roll (APR 1200)
- 15mm timber deck
- Minimum 240mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 15mm timber deck
- Minimum 240mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 15mm timber deck
- Minimum 240mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 15mm timber deck
- Minimum 215mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 15mm timber deck
- Minimum 215mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035

Timber solid joists with GypFloor® walking surface
British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- 15mm timber deck
- Minimum 215mm solid slabs at 450mm centres
- 100mm Gypsum Strong Slab Roll (APR 1200)
- Gypsum Strong Slab at 450mm centres
- Double layer of 15mm Gyproc SoundBloc
- Sacrificial ceiling lining of 100mm Gyprocosous ceiling lined with 12.5mm Gyproc WallBoard

Advice should be sought from the I joist manufacturer for the fire resistance performance.

PSR C100035
Internal walls

Internal wall details within this section are of timber and steel construction and include both Generic Internal Constructions and British Gypsum’s proprietary solutions.

Generic Internal Constructions are shown incorporating British Gypsum and Saint-Gobain Isover products, where appropriate. These details are British Gypsum versions of Generic Internal Constructions, which, provided they are built correctly, are deemed to achieve the requirements of Standard 5.2.

British Gypsum Approved Systems are deemed to achieve Standard 5.2 performance criteria for internal wall construction within new-build houses and flats, provided they are built correctly.

Timber stud

British Gypsum Approved System

- Overall construction width 93mm
- 63mm timber studs at 600mm centres
- 50mm Isover Acoustic Partition Roll (APR 1200)
- Single layer of 25mm Gyproc SoundBloc to both sides

Generic Internal Construction (Internal Wall Type 1)

- Overall construction width 125mm
- 75mm timber studs at 600mm centres
- Double layer of 12.5mm Gyproc SoundBloc or Gyproc WallBoard to both sides

Email: bgtechnical.enquiries@bpb.com
Technical Advice Centre Telephone: 0844 800 1991
Timber stud

Generic Internal Construction (Internal Wall Type 1A)

- Overall construction width 100mm
- 75mm timber studs at 600mm centres
- 25mm Isowool Acoustic Partition Roll (APR 1200)
- Single layer of 12.5mm Gyproc SoundBloc or Gyproc WallBoard on both sides

Steel stud

Generic Internal Construction (Internal Wall Type 2)

- Overall construction width 100mm
- Minimum 48mm Gypframe 48 S 50 ‘C’ Studs at 600mm centres
- Double layer of 12.5mm Gyproc SoundBloc or Gyproc WallBoard on both sides

Steel stud

Generic Internal Construction (Internal Wall Type 2A)

- Overall construction width 75mm
- Minimum 48mm Gypframe 48 S 50 ‘C’ Studs at 600mm centres
- 25mm Isowool Acoustic Partition Roll (APR 1200)
- Single layer of 12.5mm Gyproc SoundBloc or Gyproc WallBoard on both sides

Internal walls

Steel stud – GypWall Rapid dB Plus

British Gypsum Approved System

- Overall construction width 75mm
- Gypframe 43 AS 50 AcouStuds at 450mm centres
- 25mm Isowool Acoustic Partition Roll (APR 1200)
- Single layer of 12.5mm Gyproc SoundBloc on both sides

Timber stud

Generic Internal Construction (Internal Wall Type 1A)

- Overall construction width 100mm
- 75mm timber studs at 600mm centres
- 25mm Isowool Acoustic Partition Roll (APR 1200)
- Single layer of 12.5mm Gyproc SoundBloc or Gyproc WallBoard on both sides

Technical Advice Centre Telephone: 0844 800 1991

Email: bgtechnical.enquiries@bpb.com

www.british-gypsum.com/residential
Internal floors

Internal floor details within this section are of timber construction and include both Generic Internal Constructions and British Gypsum’s proprietary solutions.

Generic Internal Constructions are shown incorporating British Gypsum and Saint-Gobain Isover products, where appropriate. These details are British Gypsum versions of Generic Internal Constructions, which, provided they are built correctly, are deemed to achieve the requirements of Standard 5.2.

British Gypsum Approved Systems are deemed to achieve Standard 5.2 performance criteria for internal floor construction within new-build houses and flats, provided they are built correctly.

Timber joists

British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- Minimum 195mm solid joists at 450mm centres
- Gyptframe RB1 Resilient Bar at 450mm centres
- Single layer of 12.5mm Gyproc WallBoard

Timber joists

Generic Internal Construction (Internal Floor Type 1)

- Chipboard walking surface (minimum weight 15kg/m²)
- Minimum 200mm timber solid joists at 400mm centres
- 100mm Isover Acoustic Partition Roll (APR 1200)
- Double layer of 12.5mm Gyproc SoundBloc or Gyproc WallBoard

Timber joists

British Gypsum Approved System

- 18mm (minimum) t&g chipboard walking surface (minimum weight 15kg/m²)
- Minimum 240mm deep engineered Ijoists at 450mm centres
- Gyptframe RB1 Resilient Bars at 450mm centres
- Single layer of 15mm Gyproc WallBoard

For details regarding the fire resistance performance of this construction, advice should be sought from the Ijoist manufacturer.
Flanking details

Construction details meeting the new standards are of limited use if sound energy can reach adjacent rooms by taking sound paths with a lesser resistance.

The Example Constructions document for use with the Domestic Technical Handbook Section 5: Noise contains information to address the performance of individual separating wall and floor constructions, and the flanking sound paths formed by the junctions between these separating elements.

This section provides an overview of good practice detailing for timber frame construction.

It is not intended to fully describe the wall and floor specifications but to show the principles of the interface between elements.

For further information, including flanking detailing for other methods of construction, please refer to HomeSpec 5, the WHITE BOOK residential sector guide, available to download from www.british-gypsum.com/residential.

Flanking details – Twin frame timber stud walls

Ground floor junction

Timber floor, beam and block, pre-cast concrete plank, or cast in-situ concrete suspended slab

1. Flexible or acoustic sealant between wall lining and floor
2. Ground floors not continuous between dwellings
3. Ground floor constructions
 - Timber floor joists: may span in either direction
 - Floor decking may run under sole plates
 - Close spaces between floor joists with full depth timber blocking where joists are at right angles to wall
4. Beam and block floor with all voids filled with mortar
5. Pre-cast concrete planks with all voids between planks and blockwork filled with mortar or flexible sealant
6. Cast in-situ concrete suspended slab

Ground floor junction

Raft foundation

1. Flexible or acoustic sealant between wall lining and floor
2. A floating floor treatment must be used
 (For ground floor floating floor treatments mineral wool insulation is not required between the battens or cradle system)
3. Concrete raft - mass per unit area of 365kg/m² (minimum)

External wall

1. Masonry outer leaf (minimum 100mm thick)
2. External wall cavity (minimum 50mm)
3. Sheathing board (where necessary)
4. Inner leaf where there is no separating floor, e.g. for houses
 - One layer of 12.5mm Gyproc WallBoard
5. Inner leaf where there is a separating floor, e.g. for flats / apartments
 - If using a Robust Detail floor, check that wall and floor are compatible and use two layers of 12.5mm Gyproc WallBoard
 - Close cavity with an Isover Cavity Barrier
 - Seal all perimeter joints with Gyproc jointing materials or caulk with Gyproc Sealant

Email: bgtechnical.enquiries@bpb.com Technical Advice Centre Telephone: 0844 800 1991
Service and sockets in the separating walls

Electrical sockets, switches, etc.

1. Provide two or more layers of Gyproc plasterboard, i.e. a double layer of 15mm Gyproc SoundBloc, or a single layer of 12.5mm Gyproc WallBoard, to enclose electrical boxes
2. Stagger sockets, switches, etc. on each side of the wall
3. Alternatively, Hilti putty pads can be used

Service and sockets in the separating walls

Piped services

1. Service void within separating wall
2. Provide two or more layers of Gyproc plasterboard, i.e. a double layer of 15mm Gyproc SoundBloc, or a single layer of 12.5mm Gyproc WallBoard, to enclose pipes
3. Stagger services on each side of the wall such that they are not positioned in opposite bays

NB This detail is not applicable for SVPs or gas pipes

Roof junction

Pitched roof without room-in-the-roof

1. Junction between separating wall and roof filled with mineral wool
2. Cavity separating wall continuous to underside of roof
3. External wall cavity closed at eaves level with a suitable flexible material, e.g. mineral wool. If a rigid material is used, then it should only be bonded to one leaf
4. Wall lining above ceiling can be reduced to two layers of 12.5mm Gyproc WallBoard
5. No insulation is required in cavity above ceiling
6. 100mm bower APR 1200 mineral wool insulation between ceiling joints
7. Seal all perimeter joints with Gyproc jointing materials or caulk with Gyproc Sealant

Roof junction

Pitched roof with room-in-the-roof

1. Junction between separating wall and roof filled with mineral wool
2. Minimum 100mm bower Timber Frame Batt 35 insulation subject to thermal performance requirements
3. One layer of Gyproc ThermaLine laminate and one layer of 15mm Gyproc WallBoard subject to thermal performance requirements
4. Seal all perimeter joints with Gyproc jointing materials or caulk with Gyproc Sealant
5. External wall cavity closed at eaves level with a suitable flexible material, e.g. mineral wool. If a rigid material is used, then it should only be bonded to one leaf

Service and sockets in the separating walls

Electrical sockets, switches, etc.

1. As an alternative to D above, provide a service void on the surface of the separating wall. This is the preferred method where more than one socket, switch, etc. are close together, e.g. in a kitchen
2. Studs or battens used to create the service zone should be securely fixed back to the separating wall structure

Service and sockets in the separating walls

Electrical sockets, switches, etc.

1. Provide two or more layers of Gyproc plasterboard, i.e. a double layer of 15mm Gyproc SoundBloc, or a single layer of 12.5mm Gyproc WallBoard, to enclose electrical boxes
2. Stagger sockets, switches, etc. on each side of the wall
3. Alternatively, Hilti putty pads can be used

Service and sockets in the separating walls

Electrical sockets, switches, etc.

1. Service void within separating wall
2. Provide two or more layers of Gyproc plasterboard, i.e. a double layer of 15mm Gyproc SoundBloc, or a single layer of 12.5mm Gyproc WallBoard, to enclose pipes
3. Stagger services on each side of the wall such that they are not positioned in opposite bays
4. **NB** This detail is not applicable for SVPs or gas pipes
Flanking details – Internal walls

Internal wall

Loadbearing

1. **Seal all perimeter joints with Gyproc jointing materials or caulk with Gyproc Sealant**
2. **Where required internal wall to comply with Domestic Technical Handbook Section 5: Noise, Standard 5.2**
3. **Minimum 5mm resilient flanking strip between walking surface and wall lining**

![Diagram](image1.png)

Non-loadbearing

1. **Gypframe RB1 Resilient Bar nogging**
2. **Seal all perimeter joints with Gyproc jointing materials or caulk with Gyproc Sealant**
3. **Head plate fixed to Gypframe RB1 Resilient Bar nogging**
4. **Where required internal wall to comply with Domestic Technical Handbook Section 5: Noise, Standard 5.2**

![Diagram](image2.png)