

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

Report Number BTC 11900A

SOUND INSULATION TEST TO BS EN ISO 140-3:1995 ON A GYPROC GYPWALL™ PARTITION CONSISTING OF A DOUBLE LAYER OF 15mm GYPROC SOUNDBLOC BOARDS USING 146S50 GYPROC STUDS.

Test Date: 25[™] February 2002

Customer: British Gypsum Ltd.

East Leake Loughborough Leicestershire LE12 6HX

Customer: British Gypsum Ltd.

BTC 11900A: Page 1 of 9

0296

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

SOUND INSULATION TEST TO BS EN ISO 140-3:1995 ON A GYPROC GYPWALL™ PARTITION CONSISTING OF A DOUBLE LAYER OF 15mm GYPROC SOUNDBLOC BOARDS USING 146S50 GYPROC STUDS.

TABLE OF CONTENTS

FOREWORD	3
REPORT AUTHORISATION	
TEST CONSTRUCTION	4
TEST MATERIALS	5
Gyproc SoundBloc	
Metal components	
Fasteners	
TEST PROCEDURE	
TEST RESULTS	(
LIMITATIONS	
APPENDIX A: TEST DATA	
APPENDIX B: TEST METHOD AND CONDITIONS	9

BTC 11900A: Page 2 of 9

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

FOREWORD

This test report details a sound insulation test conducted on a sheet and stud partition system. The test sponsor was British Gypsum Limited.

The test specimen was installed by British Gypsum Limited. The construction of the specimen took place on the 25th February 2002.

REPORT AUTHORISATION

Report Author

Franklin Sanicharane HND, BEng. (Hons.). Technologist Authorised by

Eur Ing. **Paul Howard**BSc. (Hons.), CEng., MIOA
Head of Laboratory

The Building Test Centre will not discuss the content of this report without written permission from the test sponsor. The Building Test Centre retains ownership of the test report content but authorises the test sponsor to reproduce the report as necessary in its entirety only.

Customer: British Gypsum Ltd.

BTC 11900A: Page 3 of 9

0296

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

TEST CONSTRUCTION

Gyproc 148C50 metal channel was screw fixed at 300mm centres staggered to the head and the base of the test aperture using 25mm Gyproc Drywall screws. Gyproc 146S50 studs were inserted between the head and base channels at 600mm centres. A double layer of 15mm Gyproc SoundBloc boards were screw fixed to either side of the metal framework. The inner layer was screw fixed at 300mm centres around the perimeter using 25mm Gyproc Drywall screws, and the outer layer was screw fixed with 42mm Gyproc Drywall screws at 300mm centres around the perimeter and at the intermediate stud positions. The perimeter of the partition was sealed to the test aperture with Gyproc sealant. The board joints and screw heads were covered with adhesive tape.

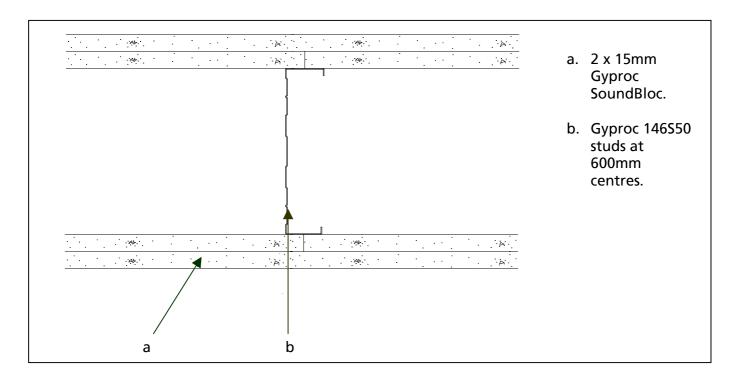


Figure 1. Cross-section through the partition.

The descriptions of individual components making up the test specimen were provided by the customer and were checked for accuracy wherever possible.

Customer: British Gypsum Ltd.

BTC 11900A: Page 4 of 9

0296

British Gypsum Limited East Leake Loughborough Leics, LE12 6NP Tel (0115) 945 1564 Fax (0115) 945 1562 email btc.testing@bpb.com

TEST MATERIALS

Gyproc SoundBloc

Nominally 2400mm (long) x 1200mm (wide) x 15mm (thick) Gyproc SoundBloc Boards manufactured by British Gypsum Limited ex Kirby Thore works.

> Average surface density: 12.88 kg/m² Actual thickness: 14.94 mm Board code: 27 0072 02:01

The surface density was calculated using the actual weight and size of the boards used in the test specimen.

Metal components

- i) Gyproc 148C50 channel manufactured from hot dipped galvanised mild steel.
- ii) Gyproc 146S50 studs manufactured from hot dipped galvanised mild steel 0.5mm thick using the Ultra steel process.

All components supplied by British Gypsum Limited.

Fasteners

- i) 25mm Gyproc S point Drywall screws supplied by British Gypsum Limited.
- 42mm Gyproc S point Drywall screws supplied by British Gypsum Limited. ii)

Where measurements could not be taken then weight and dimensions were provided by the customer or the manufacturer e.g. from material labelling. Material information was recorded according to procedure MAT/1

Customer: British Gypsum Ltd.

BTC 11900A: Page 5 of 9

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

TEST PROCEDURE

The test specimen (3.6 m x 2.4 m) was constructed in a wall dividing two reverberant rooms of approximately 98m³ and 62m³. The accuracy of the test method conforms to BS EN 20140-2:1993, the test procedure used was 140/3 issue 3. Broad-band white noise was used to measure the level differences and broad-band pink noise was used to measure the reverberation times. Third octave band pass filters were used in real time mode. See appendix B for further information.

TEST RESULTS

Weighted Airborne Sound Reduction Index

 R_{w} (C; Ctr) = 56 (-2; -6) dB

For full data see pages 7 - 8.

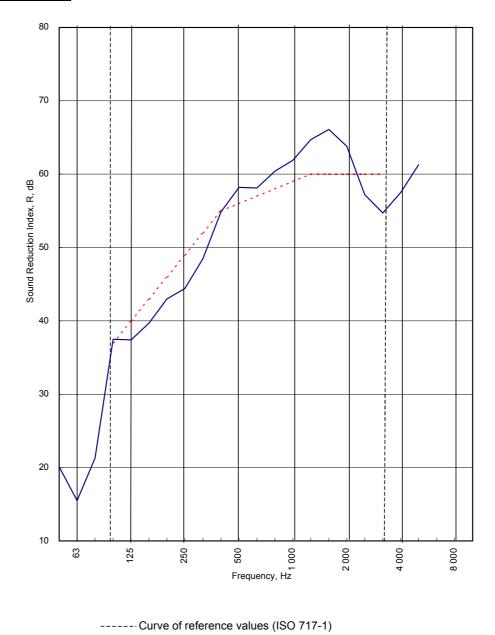
Test conducted in accordance with BS EN ISO 140-3: 1995 Rated in accordance with BS EN ISO 717-1: 1997

LIMITATIONS

The results only relate to the behaviour of the element of construction under the particular conditions of test; they are not intended to be the sole criteria for assessing the potential acoustic performance of the element in use nor do they reflect the actual behaviour.

The specification and interpretation of test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over 5 years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

Customer: British Gypsum Ltd.


BTC 11900A: Page 6 of 9

APPENDIX A- TEST DATA

Test Code:	
H11900A	
Test Date:	
25/02/02	

Freq.	R							
Hz	dB							
50	20.1							
63	15.5							
80	21.3							
100	37.5							
125	37.4							
160	39.7 43.0							
200	43.0							
250	44.4							
315	44.4 48.5							
400	54.9							
500	37.4 39.7 43.0 44.4 48.5 54.9 58.2 58.1 60.4 61.9 64.7 66.1 63.8 57.2							
630	58.1							
800	60.4							
1 000	61.9							
1 250	64.7							
1 600	61.9 64.7 66.1							
2 000	63.8							
2 500	63.8 57.2 54.7							
3 150	54.7							
4 000	57.5							
5 000	61.3							
6 300								
8 000								
10 000								

Rating according to BS EN ISO 717-1:1997	Rw (C;Ctr) = 56 (-2;-6) dB Max dev. 5.3 dB at 3 150 Hz										
Evaluation based on laboratory measurement results obtained by	C ₅₀₋₃₁₅₀ = -8 dB	C ₅₀₋₅₀₀₀ = -7 dB	C ₁₀₀₋₅₀₀₀ = -1 dB								
an engineering method:	$C_{tr,50-3150}$ = -20 dB	C _{tr,50-5000} = -20 dB	C _{tr,100-5000} : -6 dB								

Customer: British Gypsum Ltd.

BTC 11900A: Page 7 of 9

LABORATORY AIRBORNE SOUND INSULATION TEST - BS EN ISO 140-3:1995

Test Code: **H11900A** Test Date: **25/02/02**

Room T2 Room T1

Specimen Area, $S = 8.64 \text{ m}^2$ Room Volume, m^3 : 98 62

 Room Volume, m³:
 98
 62

 Temperature, deg.C:
 14.8
 13.5

 Rel. Humidity, %RH:
 56.2
 64.3

	Test Room T2 to Test Room T1										R		
Freq	Source	Rec. (uc)		• •				Corr.	R	U.Dev.	1/1Oct		
Hz	dB	dB	dB		dB		Sec	dB	dB	dB	dB		
50	58.3	35.8	27.1		35.2		0.57	-3.0	20.1				
63	63.8	47.0	16.6		47.0		0.85	-1.3	15.5 21.3		18.2		
80	68.1	44.0	14.4		44.0		0.60	-2.8					
100	75.3	37.8	22.8		37.7		1.11	-0.1	37.5				
125	79.8	41.1	11.7		41.1		0.85	-1.3	37.4	2.6	38.1		
160	87.0	46.6	17.2		46.6		0.98	-0.7	39.7	3.3			
200	92.8	49.8	29.8		49.8		1.14	0.0	43.0	3.0			
250	95.3	51.1	17.2		51.1		1.20	0.2	44.4	4.6	44.7		
315	95.6	47.3	16.2		47.3		1.20	0.2	48.5	3.5			
400	94.2	39.6	17.5		39.6		1.24	0.3	54.9	0.1			
500	91.6	33.7	12.2		33.7		1.22	0.3	58.2	58.2			
630	90.8	33.2	9.2		33.2		1.29	0.5	58.1				
800	91.1	31.4	7.5		31.4		1.36	0.7	60.4				
1 000	90.6	29.9	10.1		29.9		1.51	1.2	61.9		62.0		
1 250	91.8	28.6	7.3		28.6		1.63	1.5	64.7				
1 600	94.3	29.6	7.4		29.6		1.58	1.4	66.1				
2 000	95.9	33.6	6.6		33.6	1.64		1.5	63.8		60.7		
2 500	94.2	38.3	5.3		38.3	1.54		1.3	1.3 57.2				
3 150	93.2	39.3	6.6		39.3		1.37	8.0	54.7	5.3			
4 000	92.4	35.8	11.4		35.8		1.41	0.9	57.5		57.1		
5 000	90.6	30.2	18.6		29.9		1.32	0.6	61.3				
6 300													
8 000													
10 000													
Single Fi	gure Rating	ıs	Rw	С		Ctr		Total U.	Dev., dB	25.2			
_	60 717-1: 19	-	dB	dB		dB							
DO EN IO	O /1/-1: 19	97											
			56	-2		-6							
		(100-5000)	-1	•	-6							
Backgroun	nd Corrected												
		(50-3150)	-8	-	20							
RT's > fact	or 1.5 apart		•										
Tested Ser	Tested Serially[] Real Time[] (50-5000) -7 -20												

Customer: British Gypsum Ltd.

BTC 11900A: Page 8 of 9

APPENDIX B- TEST METHOD AND CONDITIONS

The source room (T2) was treated with six perspex diffusers of approximately 900mm x 1220mm. An omni-directional loudspeaker sound source is placed near a back corner of the source room (T2), rotating at 1 rpm and at least 0.7m from any room boundary to satisfy Annex C of BS EN ISO 140-3: 1995. A stationary loudspeaker sound source is placed in the corner of the receiving room (T1) opposite the test specimen.

The average sound pressure level in each 1/3 octave band is measured using a rotating microphone boom, positioned such that the minimum distance between microphone and sound source is 1m and between microphone and room boundaries is 0.7m. The rotating microphone has a sweep radius of at least 1m and is inclined in relation to the boundaries at an angle of at least 30° to the horizontal. The microphone has a traverse time of 32 seconds, and the sound pressure levels are averaged over 64 seconds which is equivalent to two complete sweeps of the microphone boom.

The equivalent absorption area of the receiving room is determined by producing the arithmetic average of six reverberation times and applying this to the Sabine formula.

The test specimen is installed in the aperture so that it finishes flush with the first independent timber in room T2 side to eliminate indirect transmission between rooms. The specimen is not installed so that the aperture depth ratio 2:1 is met as recommended in section 5.2.1 of BS EN ISO 140-3:1995. Laboratory tests have been carried out to prove the insignificance of this installation position on the test results.

The laboratory limit for measurement due to flanking is (BTC 11709A)

Freq Hz	50	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
R'max	45 (46.9	56.3	61.8	58 5	60.6	62 5	66.3	74 1	79 5	85 N	90.4	93.8	95.0	95.3	98.3	100 4	98 5	96 3	93 9	91 1

The figure below show flanking and isolation treatments in the test chamber.

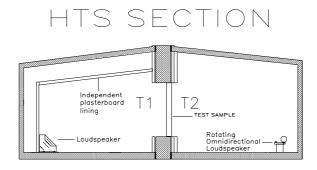


Figure 2 Chamber layout.

Customer: British Gypsum Ltd.

BTC 11900A: Page 9 of 9

